

6 February 2023 Ref: E32491PTlet2

lggy Aberasturi c/- Archicorp

Attention: Mr Peter Zaverdinos Email: <u>achicorpz@hotmail.com</u>

PRELIMINARY ACID SULFATE SOIL ASSESSMENT & MANAGEMENT PLAN PROPOSED RESIDENTIAL DEVELOPMENT 26 TUPIA STREET, BOTANY, NSW

1 INTRODUCTION

Archicorp on behalf of the client commissioned JK Environments (JKE) to prepare an updated acid sulfate soil (ASS) assessment and management plan for the proposed residential development at 26 Tupia Street, Botany, NSW ('the site'). The site is identified as Lot X in DP32914. The site location is shown on Figure 1 and the assessment was confined to the site boundaries as shown on Figure 2.

The assessment was undertaken generally in accordance with a JKE proposal (Ref: EP57559PT) of 6 December 2022 and written acceptance from Archicorp by email of 7 December 2022. A geotechnical assessment was undertaken previously to the ASS assessment by JK Geotechnics and the results are presented in a separate report (Ref: 32491SNrpt rev2, dated 6 February 2023).

The aims of the assessment were to establish whether ASS may be disturbed during the proposed development works, and to assess whether an ASS management plan (ASSMP) is required based on the existing project information.

1.1 Assessment Guidelines and Background

The ASS assessment and preparation of this report were undertaken with reference to the National Acid Sulfate Soil Guidance (2018) documents and the Acid Sulfate Soil Management Advisory Committee (ASSMAC) Acid Sulfate Soil Manual (1998)¹. It is noted that the intrusive investigation data is based on sampling and analysis that occurred in 2019.

¹ Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual (ASS Manual 1998)

ASS materials include potential acid sulfate soils (PASS or sulfidic soil materials) and actual acid sulfate soils (AASS or sulfuric soil materials). These are often found in the same profile, with AASS overlying PASS. AASS and PASS are defined further as follows:

- PASS are soil materials which contain Reduced Inorganic Sulfur (RIS) such as pyrite. The field pH of these soils in their undisturbed state is usually more than pH 4 and is commonly neutral to alkaline (pH 7–9). These soil materials are invariably saturated with water in their natural state. Their texture may be peat, clay, loam, silt or sand and is often dark grey in colour and soft in consistence, but these materials may also exhibit colours that are dark brown, or medium to pale grey to white; and
- AASS are soil materials which contained RIS such as pyrite that have undergone oxidation. This oxidation results in low pH (that is pH less than 4) and often a yellow (jarosite) and/or orange to red mottling (ferric iron oxides) in the soil profile. Actual ASS contains Actual Acidity, and commonly also contains RIS (the source of Potential Sulfuric Acidity) as well as Retained Acidity.

Further background information on ASS and the assessment process is provided in the appendices.

1.2 Proposed Development Details

It is understood that the updated proposed development will comprise three separate four storey residential apartment buildings over two levels of common basement carparking. The finished floor level of the lowest basement (Basement 02) is at relative level (RL) -1.8m. The upper basement level (Basement 01) is partially out of the ground and bulk excavation to depths between approximately 4.5m and 7m below existing surface levels is expected to be required. Deeper soil disturbance may occur depending on the basement shoring and piling solutions that are required.

2 SITE INFORMATION

2.1 Summary of Previous Investigations

2.1.1 JKG, July 2019

The JK Geotechnics assessment included a review of information and data obtained during fieldwork undertaken in 2007. Three boreholes were drilled across the site and the subsurface conditions encountered included sandy fill soils, underlain by marine sands to the maximum termination depth of the boreholes at 6.45m below ground level (BGL). Groundwater was encountered in all boreholes at depths of between 0.9m to 2.1m BGL. This report has also been updated (November 2022), to reflect the updated proposed development design.

2.1.2 JKE, July 2019

JKE previously undertook an ASS assessment at the site in July 2019 (Ref: E32491BTlet, dated 15 August 2019). Soil samples were collected from four locations, to a maximum borehole depth of 7.1m. The assessment undertaken not long after the new National framework and guidance for ASS assessment was released. There was slow regulatory uptake of that guidance in NSW, however, the previous data has been re-assessed within this revised assessment report, as discussed in the following sections.

2.2 Site Information and Description

Site Address:	26 Tupia Street, Botany, NSW
Lot & Deposited Plan:	Lot X in DP32914
Current Land Use:	Commercial/industrial
Site Area (m ²):	8,000
Geographical Location	Latitude: -33.9549473
(approx.):	Longitude: 151.2016861

The most recent site inspection was undertaken at the time of the fieldwork in 2019. A review of available Nearmap aerial imagery indicates there has been no significant changes in site development in the intervening period.

The site is located within a predominantly residential part of Botany Bay. The regional topography is characterised by a gently sloping (south) alluvial deposit, on the northern section of Botany Bay. The site itself graded down to the south west at around 1-2°. The site is generally "L" shaped and is accessed from Tupia Street in the north east corner of the site (Figure 1). The site is approximately 130m wide (east – west) by approximately 38m deep on the eastern side increasing up to approximately 95m (north – south) in the main site area.

At the time of the site inspection the site was occupied by three single storey buildings and utilised as an industrial complex. Site activities were observed to include metal fabrication, motor mechanics, spray painting works and warehousing facilities. The buildings were of brick, concrete, fibre cement and concrete construction

To the north of the site was a services easement containing a concrete sewerage carrier and the main Caltex jet fuel line, beyond which were (residential) apartments. Grass covered recreational areas were located to the west and south of the site. An asphaltic concrete carpark and more recreational parkland was located to the east of the site.

2.3 Regional Geology

The geological map of Sydney (1983)² indicates the site to be underlain by underlain by Quaternary aged deposits of medium to fine-grained marine sands with podsols.

² Department of Mineral Resources, (1983). 1:100,000 Geological Map of Sydney (Series 9130)

2.4 Acid Sulfate Soil Risk Map

A review of the ASS risk maps prepared by Department of Land and Water Conservation (1997)³ indicates that the site is situated on the boundary of an area classed as 'disturbed terrain' with a fill depth of approximately 2-4m (southern and western sections of site), and a low probability risk area of aeolian and alluvial soils at greater than 3m below the ground surface (northern and eastern section of site.

The 'disturbed terrain' classification is adopted in large scale filled areas which often occur during reclamation of low lying swamps for urban development, in areas which may have been mined or dredged or have undergone heavy ground disturbance through general urban development or the construction of dams and levees. The majority of landforms within these areas are not expected to encounter PASS. However, localised occurrences may be found at depth. Disturbance of these materials will result in a risk that will vary with elevation and depth of disturbance. Soil investigation is required to assess these areas for PASS.

2.5 Bayside Council Local Environmental Plan (LEP) 2021

A review of the Bayside council LEP indicates that the site is situated on the boundary of two ASS risk Classes 2 (southern and western section of the site) and 4 (northern and eastern section of site). Refer to the appendices for further details on each risk class.

3 INVESTIGATION REQUIREMENTS AND ASSESSMENT CRITERIA

3.1 Investigation Requirements

The National Acid Sulfate Soil Guidance (2018) requires sampling to a depth of 1m beyond the depth of disturbance (including the depth of any groundwater disturbance). A summary of the sampling densities and analysis requirements outlined in the *National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual* (2018) is provided in the following tables:

Type of disturbance	Extent of site	Sample point frequency
Small volumes (\leq 1000 m ³) – prior to disturbance	Volume of disturbance (m ³)	Number of boreholes
	< 250	2
	251–500	3
	501–1000	4
Large volumes (> 1000 m ³) – prior to disturbance	Project area (ha)	Number of boreholes
	<1	4
	1-2	6
	2-3	8
	3-4	10
	>4	10 plus 2 per additional hectare

Table 3-1: Minimum Soil Sampling Densities for ASS Investigations

³ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 9130N3, Ed 2).

Type of disturbance	Extent of site	Sample point frequency
Linear	Width and volume	Intervals (m)
	Minor ¹	100
	Major ²	50
Existing stockpiles & verification testing	Volume (m ³)	Number of samples
	<250	2
	251-500	3
	1,000	4
	>1,000	4 plus 1 per additional 500m ³

¹ Minor Linear Disturbance – for example underground services, narrow shallow drains (less than 1 m below ground level).

² Major Linear Disturbance – for example roads, railways, canals, deep sewer, wide drains, deep drains and dredging projects[#].

[#] Further guidance is provided in the Guidelines for the dredging of acid sulfate soil sediments and associated dredge spoil management (Simpson et al. 2017).

Table 3-2: Minimum Number of Soil Sam	ples to be Submitted for Laborator	v Analysis (small-scale disturbance)

Volume of	Maximum disturbance depth			
disturbed soils	< 1 m	1–2 m	2-3 m	3-4 m
≤ 250m ³	3	4	5	6
251–500m ³	4	5	6	7
500–1,000m ³	5	6	7	8

Note: Small scale is considered less than or equal to 1,000 m³ and does not involve dewatering or groundwater pumping (excluding linear disturbances). Number of samples to be analysed per total volume of soil to be disturbed, not per borehole. Depth of disturbance to be measured from ground surface. Borehole depth must be at least 1 m below maximum proposed depth of disturbance.

The investigation component of this assessment was designed as a preliminary investigation, however, it is considered that the number of boreholes and samples analysed was reasonable based on the details available at the time. A data gap exists beyond the maximum sampling depth; this would primarily impact the assessment of ASS conditions that may be encountered during shoring/piling works (assuming such works extends past the anticipated bulk excavation depths).

3.2 Action Criteria

The action criteria presented in the *National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual* (2018) are summarised in the following table:

Type of material		Net Acidity			
Texture range*	Approximate	1–1000 t materials	s disturbed	> 1000 t materials	disturbed
(NCST 2009)	clay content	% S-equiv.	mol H⁺/t (oven-	% S-equiv.	mol H⁺/t (oven-
	(%)	(oven-dried	dried basis)	(oven-dried	dried basis)
		basis)		basis)	
Fine - light medium	>40	≥0.10	≥62	≥0.03	≥18
to heavy clays					
Medium - clayey	5–40	≥0.06	≥36	≥0.03	≥18
sand to light clays					

Table 3-3: ASS Action Criteria Based on Soil Texture and Volume of Material Being Disturbed

Type of material		Net Acidity			
Coarse and Peats - sands to loamy sands	<5	≥0.03	≥18	≥0.03	≥18

* If bulk density values are not available for the conversion of cubic meters to tonnes of soil, then default bulk densities, based on the soil texture, may be used.

The action criteria for coarse soils (sands) were used for this assessment.

4 INVESTIGATION PROCEDURE

4.1 Subsurface Investigation and Soil Sampling Methods

Field work was undertaken in 2019. Soil samples were collected from four locations in conjunction with the JK Geotechnics investigation, to a maximum borehole depth of 7.1m. The sampling locations are shown on the attached Figure 2.

The sample locations were drilled using a track mounted hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler.

Soil samples were obtained at various depths, based on observations made during the field investigation. All samples were placed in plastic bags and sealed with plastic ties with minimal headspace. Each sample was labelled with a unique job number, the sampling location, sampling depth and date. All samples were recorded on the borehole logs attached in the appendices.

The samples were preserved by immediate storage in an insulated sample container with ice and frozen upon return to the JKE office. Samples were subsequently delivered in the insulated sample container (on ice or with ice packs) to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures. Additional samples were frozen and stored pending further analysis.

4.2 Laboratory Analysis

Samples for this assessment were analysed for ASS characteristics using the Suspension Peroxide Oxidation Combined Acidity and Sulfur (SPOCAS) analysis method, with selected samples subsequently analysed for chromium reducible sulfur (S_{CR}). The S_{CR} analysis targeted samples with the highest net acidity and aimed to better assess potential impacts from organic sulfur or sulfates which may have impacted the net acidity results reported by the SPOCAS analysis.

Samples were Analysed by Envirolab Services (NATA Accreditation Number – 2901). Reference should be made to the laboratory report (Ref: 222555 and 222555-A) attached in the appendices for further information regarding the laboratory methods used.

5 RESULTS OF THE INVESTIGATION

5.1 Subsurface Conditions

A summary of the subsurface soil conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description (depth in mBGL)
Pavement	Asphaltic concrete pavement was encountered in all boreholes and ranged in thickness from 100mm to 150mm.
Fill	Fill material was encountered in all boreholes and extended to depths of approximately 0.4m to 1.0m. The fill typically comprised silty sand and gravelly sand.The fill contained inclusions of ironstone gravel, igneous gravel, sandstone gravel and concrete and asphaltic concrete fragments.
	Neither odours nor staining were observed in the fill material during the field work. Asbestos containing material was not observed in the fill material during the fieldwork.
Natural Soil	Silty sand, sand, and clayey sand natural soil was encountered in all boreholes beneath the fill material and extended to the maximum termination depth of the boreholes at 7.1m. An organic odour was noted at 6.5m in BH101, at 4.6m in BH102 and 1.0m in BH104. No other odours or staining were observed in the natural soils during the field work.
Bedrock	Seepage was encountered in all boreholes and ranged in depth from 1.0m to 1.5m.
Groundwater	Asphaltic concrete pavement was encountered in all boreholes and ranged in thickness from 100mm to 150mm.

Table 5-1: Summary of subsurface conditions

5.2 Laboratory Results

The soil laboratory results were assessed against the action criteria adopted for the assessment. The results are presented in the attached report tables and are summarised below.

Table 5-2: Summary of Results

Results	Comments
Net Acidity % S- equiv.	The results ranged from less than the practical quantitation limit (PQL) to 0.073%w/w. Of the results, four were above the action criterion of 0.03%w/w. These were reported in BH103 and BH104, in clayey sand from a depth of 1.5mBGL and in silty sand from a depth of 3mBGL respectively.
Net Acidity mol H ⁺ /t	The results ranged from <5 moles H ⁺ /tonnes to 290 moles H ⁺ /tonnes. Of the results, four were above the action criterion of 18 moles H ⁺ /tonnes. These results were reported in BH103 and BH104, in clayey sand from a depth of 1.5mBGL and in silty sand from a depth of 3mBGL respectively.

Results	Comments
Scr%	A selection of three samples with high net acidity results were analysed for S_{CR} . The S_{CR} % results ranged from <0.005% S_{CR} to 0.03% S_{CR} . These results suggested that the net acidity was at least partially attributable to oxidisable sulfur.
Liming Rate	The liming rate required for neutralisation ranged from less than the PQL to 3.4kgCaCO ₃ /tonne.

6 ASSESSMENT CONCLUSION

The laboratory results identified acidic conditions greater than the action criteria. Based on the weight of evidence collected and evaluated for this assessment, we consider that PASS will be disturbed during the proposed development works and therefore there is a need for an ASSMP. The ASSMP is provided in the subsequent sections.

7 ACID SULFATE SOIL MANAGEMENT PLAN

7.1 Conceptual Site Model for ASS Materials

In summary:

- Net acidity results exceeded the action criteria in clayey sand samples from BH103 from a depth of 1.5mBGL and in BH104 from a depth of 3mBGL. Where exceedances occurred, appreciable oxidisable sulfur concentrations (indicated by the chromium reducible sulfur % - S_{CR}) were also reported suggesting that this material is PASS. PASS indicators were not encountered in the other samples collected from shallower depths or in the other boreholes;
- Groundwater seepage was encountered in all boreholes and ranged in depth from 1.0mBGL to 1.5mBGL.
- The liming rates calculated as part of the acid base accounting analysis were between 1.6 kgCaCO₃/t and 3.4kgCaCO₃/t.

PASS will need to be managed in the context of the proposed development works. It is anticipated that PASS will be disturbed and will require management during piling (including the basement shoring wall construction) and bulk excavation. However, the site conditions are variable and further detailed investigation must occur following demolition in order to better characterise the depth and horizontal extent of the PASS (see Section 8.1 for further details).

8 MANAGEMENT PLAN

8.1 Application and Further Investigation

Management requirements are triggered under this ASSMP for all soil disturbance that results in exposure of PASS to air.

A detailed investigation must occur following demolition to better delineate (vertically and horizontally) the extent of the PASS and characterise the groundwater for PASS management purposes. This investigation should broadly be designed as follows (in consultation with the project environmental consultant):

- Once the depths and construction methodologies are finalised for the building foundations and basement shoring system, an additional investigation should be designed to gather additional soil data from across the site. It is recommended that a systematic grid-based sampling plan is implemented, with a spacing of not more than 25m between sampling points;
- Soil sampling should occur using suitable drilling methodologies, with sampling occurring to at least 1m beyond the maximum depth where piling spoil will be generated (or to the top of bedrock, whichever is shallower);
- Soil samples are to be collected at approximately 0.5m intervals down the soil profile, to the termination depth of the borehole;
- Each soil sample is to be analysed for pH_F and pH_{FOX}, with these results subsequently assessed to identify the samples for further acid-base accounting/net acidity (including S_{CR}) analysis;
- Groundwater samples are also to be collected from each existing groundwater monitoring well using low flow sampling techniques (following well development and purging) and analysed for⁴:
 - pH; alkalinity; acidity;
 - Sulfate and chloride;
 - electrical conductivity (EC); calcium;
 - Turbidity, total dissolved solids (TDS), total suspended solids (TSS), total organic carbon (TOC) and sodium absorption ratio (SAR);
 - Ionic balance, which includes major anions and the cation suite (including hardness);
 - Metals including Aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, zinc;
 - Nutrient suite, including ammonia, nitrate, total nitrogen, oxidised nitrogen, total phosphorus and reactive phosphorus.
- A report is to be prepared on completion and the ASSMP is to be updated. This must be submitted to the certifier and to the consent authority (Bayside Council) prior to commencement of works that disturb or expose PASS

8.2 Roles and Responsibilities

The primary role and responsibility for implementing this ASSMP (and the updated ASSMP) is the construction/excavation contractor. The construction contractor is responsible for obtaining a copy of this ASSMP and taking reasonable steps so that it is adequately implemented.

The construction contractor (or the client) is to engage a validation consultant to monitor the works and validate the implementation of the ASSMP. The construction contractor and validation consultant are also to refer to any specific requirements of Bayside Council, as documented in the development consent to be provided. The consent authority must also specify whether any other plans or permits etc are required prior

⁴ We note that it would be prudent to expand the above groundwater analytical suite to align with the mandatory groundwater screening requirements for construction dewatering applications

to the commencement of any works under this ASSMP, and the construction contractor/client is to ensure such plans/permits etc are obtained.

8.3 Preferred Strategies for Management

The management proceedures outlined herein are conceptual in nature and will be re-assessed and updated following completion of the additional investigation works specified in Section 8.1.

The preferred strategy for managing environmental risks associated with PASS is to eliminate disturbance of the PASS. Where this cannot occur, disturbance is to be limited to the extent practicable and the disturbance is to be managed under the ASSMP.

Based on the proposed development details, we anticipate that disturbance of the PASS cannot be avoided given that the excavation for the proposed basement will extend to the approximate depth where PASS is expected to occur, and piling spoil is expected to be generated from below this depth. The following works have been identified that would involve the disturbance of PASS:

- Bulk excavation for the proposed basement; and
- Piling and basement cut-off wall construction works which generate spoil.

We understand that the basement cut-off wall will likely include a diaphragm or secant pile wall extending down to bedrock. Construction of the wall will generate spoil via excavation/displacement due to the nature of the works. For simplicity herein, we have referred to this material and any material generated during alternative piling processes for the main structure collectively as spoil or piling spoil.

The strategy for managing PASS material generated during piling works will include ex-situ treatment, followed by waste classification and off-site disposal. The strategy for excavation of PASS material as part of basement construction (where applicable) will include in-situ and ex-situ treatment, followed by waste classification and off-site disposal.

Once the design and construction methodologies are finalised, the validation consultant is to undertake a review of these details in consultation with the client/construction contractor. If the scope of the ASSMP is not considered to be adequate to address the potential environmental risks associated with the disturbance of PASS materials during the development, an addendum or revised ASSMP is to be prepared (reference should also be made to Section 8.1 of this ASSMP in this regard). This must be submitted to the certifier and the consent authority (Bayside Council) prior to commencement of works that disturb or expose PASS.

JKE is aware that some licenced facilities may be able to accept untreated PASS, provided that the material is managed appropriately and can meet the strict monitoring and pH testing requirements of the facility. This approach would most likely only be applicable to the natural PASS waste stream and would not apply for mixtures of PASS and fill (such as that material generated during piling which is expected to include a fill, natural non-PASS soils and PASS mixture). The client should make further enquiries in this regard to identify facilities that can accept untreated PASS and establish whether it is more cost effective to manage some of the PASS in this way. Should this alternative method be attempted, an addendum to the ASSMP, or a revised

ASSMP, is to be prepared by a suitably qualified consultant to reflect the specific handling, management and monitoring requirements of the receiving facility.

8.4 Management of PASS

8.4.1 Piling Spoil PASS (ex-situ treatment)

PASS material generated during piling works will be managed by the addition of lime to neutralise acid that may be produced during and after piling works. The treated material is then to be assigned a waste classification in accordance with the NSW EPA Waste Classification Guidelines - Part 1: Classifying Waste (2014)⁵ and NSW EPA Waste Classification Guidelines - Part 4: Acid Sulfate Soils (2014)⁶, and disposed off-site to landfill.

A slightly alkaline, low solubility product such as agricultural lime should be used. This form of lime is chemically stable and any excess lime takes a significant period of time (years) to influence soil pH beyond the depth of application. The lime particles eventually become coated with an insoluble layer of ferrihydrite (Fe[OH]3) that inhibits further reaction. Long term alteration of groundwater conditions is not expected to occur as a result of the use of lime above the groundwater mark during the proposed development works. Controlled applications of agricultural limes are generally not harmful to plants, humans and most aquatic species and, therefore, are considered suitable for use on the soils for this project.

The construction contractor is to ensure that an appropriate Work Health and Safety Plan (WHSP) and Construction Environmental Management Plan (CEMP) is prepared prior to the use of lime and commencement of construction/management works.

Reference is to be made to the following table for the ex-situ treatment and management procedure:

Procedure	Details
Step 1: Lime selection and Liming Rate Calculations	A suitable lime product is to be selected as discussed above. A neutralising value (NV), effective neutralising value (ENV) and overall liming rate for ex-situ treatment of PASS is to be calculated based on the type of lime (and its properties) selected, the acid base accounting results presented in the table in Appendix B, and in accordance with the ASS Manual 1998. The initial lime calculations from the acid base accounting laboratory result indicated that in the order of 3.4kg CaCO ₃ /t may be required to neutralise the PASS. This can be confirmed via treatment trials during the initial stage of excavation works, and refined as required.
Step 2: Set up treatment area/s	A treatment area for the mixing of piling spoil with agricultural lime should be established. Treatment must occur either within a leak-proof containment area such as a bunded area on hardstand, or in a designated area where the ground surface is protected by a guard layer of lime. The pad of lime should be at least 100mm thick and this thickness should be maintained for the duration of treatment works. The purpose of this guard layer is to minimise the risk of acidic water leaching from the base of the treatment area into the shallow groundwater table.

Table 8-1: Ex-situ Treatment/Management of PASS – Piling Spoil

⁵ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste*. (referred to as Part 1 of the Waste Classification Guidelines 2014) ⁶ NSW EPA, (2014). *Waste Classification Guidelines, Part 4: Acid Sulfate Soils*. (referred to as Part 4 of the Waste Classification Guidelines 2014)

Details
Dependent upon the rate of spoil generation, several bunded treatment areas may be necessary for stockpiling and treatment. An earthworks strategy should be prepared to ensure that sufficient space is available on-site to accommodate treatment of the PASS.
During piling, PASS material is expected to be generated from at or below the water table and the treated material is likely to be wet. The treatment area should be designed to retain any water run-off from the treated materials. This could consist of a compacted clay bund (constructed of non-PASS material) and/or sandbags filled with a mixture of lime and sand.
PASS material is expected to be generated from at or below the water table and the treated material is likely to be wet. The treatment area must be designed to retain any water run-off from the treated materials. This could consist of sandbags filled with a mixture of lime and sand. Reference should also be made to Section 8.5 for additional details of the water management measures required.
During piling works, separation of PASS and non-PASS material is unlikely to be possible. In this case all piling spoil should be treated as PASS. PASS generated during piling works should be immediately transferred to the designated treatment area and spread out in 150mm thick layers. If possible, the layers should be allowed to dry in order to aid the mixing process. The layers should then be interspersed with the appropriate amount of lime to aid in the effective mixing of lime and soil. Lime should be applied to the excavated material within the treatment area as soon as possible.
If circumstances prevent the spreading and treatment of the material, the surface area of the stockpile should be minimised by forming a relatively high coned shape and avoiding 'spreading-out' of the stockpile. This will limit the surface area exposed to oxidation. Water infiltration should be minimised by covering the stockpile during wet weather as noted in Step 3. This will limit the formation and transport of acid leachate due to rainfall. The stockpile should be bunded to prevent erosion of the PASS and any movement of potentially acid leachate. Upstream surface runoff water should also be diverted around the stockpile.
Any additional requirements outlined by the project environmental consultant for managing the overlying fill soil (i.e. in soils above the PASS), must also be considered during piling given that the piling spoil to be generated will likely include (unless adequate segregation occurs) a mixture of the fill and PASS (i.e. piling is likely to extend through the fill and into the PASS, generating a mixed waste stream).
An earthworks strategy should be developed to manage the stockpiles. It is noted that the validation testing (see Step 5 below) takes several days, therefore suitable allowances should be incorporated into the project timeline.
An excavator or other suitable equipment (as deemed appropriate by the construction contractor) should be used to thoroughly mix the lime through the soil.
Once treatment occurs, samples are to be collected from the treated soil at the rates required in the <i>National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual</i> (2018). A minimum of one sample is recommended per batch of treated soil prior to off-site disposal, and the overall validation frequency must be as follows: • <250m ³ , two samples
 251-500m³, three samples 1,000m³, four samples

JKEnvironments

Procedure	Details
	 >1,000 m³, four samples plus one sample per additional 500m³
	Field pH may be used as a preliminary indicator where deemed appropriate by the validation consultant.
	Validation testing is to occur at a NATA accredited laboratory and will include acid base accounting using the chromium reducible sulfur method described in the <i>National Acid Sulfate Soil Guidance: National acid sulfate soils identification and laboratory methods manual</i> (2018). For piling spoil, if the works occur progressively, a minimum of one sample is required per batch of treated soil prior to off-site disposal, with no less than four samples in total for the project up to 500m ³ of material to be treated.
	The validation net acidity results should be zero or less than the laboratory practical quantitation limits (PQL), depending on how the laboratory report their results.
	It is noted that the validation testing takes 3-4 days, therefore suitable allowances should be incorporated into the project timeline and earthworks plan.
<u>Step 6:</u> Waste classification and off- site disposal	Following treatment, the material should be tested and assigned a waste classification in accordance with the Parts 1 and 4 of the Waste Classification Guidelines 2014. All neutralised material should be disposed of off-site to a facility licensed by the NSW EPA to accept treated PASS.

8.4.2 PASS Disturbed/Exposed During Basement Excavation (in-situ/ex-situ treatment)

Reference is to be made to the following table for the in-situ treatment and management procedures associated with the bulk excavation works:

Procedure	Details
Step 1: Lime selection and Liming Rate Calculations	A suitable lime product is to be selected as discussed in Section 8.4.1.
Step 2: Set up treatment area/s	Treatment of bulk quantities of PASS with lime will take place within the basement footprint (within the confines of the shoring wall) during excavation, following removal of the overlying fill material and any non-PASS natural soils. It is assumed that the basement shoring system will have been installed around this area and that the area will be dewatered prior to excavation.
Step 3: Manage water run-off	The treatment area will be within the basement footprint which will retain any water run- off from the treated materials. Further reference should be made to Section 8.5 for details of the groundwater management measures required.
Step 4: Excavation & handling	It is expected that the initial surface of PASS material will become exposed following the removal of the overlying fill material and some non-PASS natural soils. Lime should be applied to any exposed PASS surfaces within the treatment area as soon as possible. The treatment of PASS within the basement excavation footprint will occur in 100mm layers (or similar, based on what is appropriate to achieve adequate neutralisation and

Table 8-2: In-situ Treatment/Management of PASS

Procedure	Details		
	materials handling). An appropriate amount of lime is to be applied to each layer, per square metre based on the volume/tonnage of soil to be treated in each layer. The layer is to be pushed or scraped up to appropriately mix in the lime, then the material is to be consolidated into one corner of the excavation to facilitate the validation testing. This process is to be repeated for each layer until the bulk excavation depth is achieved.		
	If there are any localised/detailed excavations where excavation/treatment in layers is not practicable, material from these areas is to be excavated and treated using the ex-situ treatment methods described previously in Table 8-1.		
	An earthworks strategy should be prepared incorporating the above procedure to ensure that adequate mixing of the neutralising agent (i.e. lime) and of the PASS material is achieved. It is noted that the validation testing (see Step 5 below) takes several days, therefore suitable allowances should be incorporated into the project timeline.		
Step 5: Lime treatment & validation testing	An excavator or other suitable equipment (as deemed appropriate by the construction contractor) should be used to thoroughly mix the lime through the soil.		
	Once treatment occurs, samples are to be collected from the treated soil at the rates required in the <i>National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual</i> (2018). A minimum of one sample is recommended per batch of treated soil prior to off-site disposal, and the overall validation frequency must be as follows:		
	• <250m ³ , two samples		
	 251-500m³, three samples 1,000m³, four samples 		
	 >1,000 m³, four samples plus one sample per additional 500m³ 		
	Field pH may be used as a preliminary indicator where deemed appropriate by the validation consultant.		
	Validation testing is to occur at a NATA accredited laboratory and will include acid base accounting using the chromium reducible sulfur method described in the <i>National Acid</i> <i>Sulfate Soil Guidance: National acid sulfate soils identification and laboratory methods</i> <i>manual</i> (2018). The validation net acidity results should be zero or less than the laboratory PQL (depending on how the laboratory report their results).		
	It is noted that the validation testing takes 3-4 days, therefore suitable allowances should be incorporated into the project timeline and earthworks plan.		
<u>Step 6:</u> Waste classification and off- site disposal	Following treatment, the material should be tested and assigned a waste classification in accordance with the Parts 1 and 4 of the Waste Classification Guidelines 2014. All neutralised material should be disposed of off-site to a facility licensed by the NSW EPA to accept treated PASS.		

8.5 Groundwater Seepage and Dewatering

For this project, an engineered retention system will be installed prior to commencement of excavation for the proposed basement and piling (e.g. diaphragm or secant pile wall) will occur so that the basement shoring would be a 'watertight' structure. Due to the presence of shallow groundwater at the site, temporary dewatering will be required to complete the basement excavation.

Based on the JK Geotechnics geotechnical report, it is assumed that the basement shoring system will need to extend to sufficient depth below bulk excavation level to limit groundwater drawdown outside the basement footprint and minimise settlement impacts beyond the site boundary (i.e. into bedrock). On this basis, the potential to dewater PASS outside the basement excavation, to the extent that could cause prolonged oxidation and generation of acidic material, is considered to be low.

The details of dewatering are yet to be confirmed. Once the details of dewatering are confirmed, an *Acid Sulfate Soil Dewatering Management Plan* (ASSDMP) is to be prepared by the validation consultant. This is to be designed with reference to the *National Acid Sulfate Soil Guidance: Guidance for the dewatering of acid sulfate soils in shallow groundwater environments* (2018) and consider the site-specific requirements of the dewatering.

The dewatering plan is to be submitted to the relevant consent authorities (e.g. Bayside Council and NSW Office of Water/Water NSW) for approval prior to the commencement of works. We note that Water NSW should be contacted for advice in relation to obtaining relevant approvals for dewatering, prior to preparation of the management plan.

8.6 Contingency Plan

In the event the results of soil neutralisation or groundwater monitoring tests (to be outlined in the ASSDMP) indicate a significant change in acidic conditions, the contingency plan should be implemented. Reference is to be made to the contingency plan below and to any other contingency plans documented in the ASSDMP to be prepared for the project.

If soil monitoring indicates the presence of significantly more acidic material than expected, all excavation works should be placed on hold (where it is safe to do so) until further action is taken to limit the oxidation of PASS in the area of disturbance. Contingency works will be undertaken as follows:

- The pH of soils exposed to oxygen within the excavation will be measured to establish the source of the acidic conditions;
- Under the direction of the validation consultant, material found to be acidic may be selectively excavated and neutralised in accordance with the ex-situ treatment methods in Section 8.4.1 (Table 8-1). Exposed surfaces should be immediately 'dusted' with lime; and
- Where suitable, in-situ treatment involving lime addition and shallow in-situ mixing may be adopted.

Reference must also be made to the contingency plan to be outlined in the ASSDMP.

8.7 Documentation

On completion of the works requiring management under the ASSMP, a validation report is to be prepared by the validation consultant. The validation report is to document the works completed, present the validation testing results and comment on the adequacy of the overall compliance with the ASSMP. Any other specific conditions imposed by Bayside Council on the development consent must also be adequately addressed.

9 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified AASS or PASS issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose;
- Copyright in this report is the property of JKE. JKE has used a degree of care, skill and diligence normally exercised by consulting professionals in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report;
- If the client, or any person, provides a copy of this report to any third party, such third party must not rely on this report except with the express written consent of JKE; and
- Any third party who seeks to rely on this report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

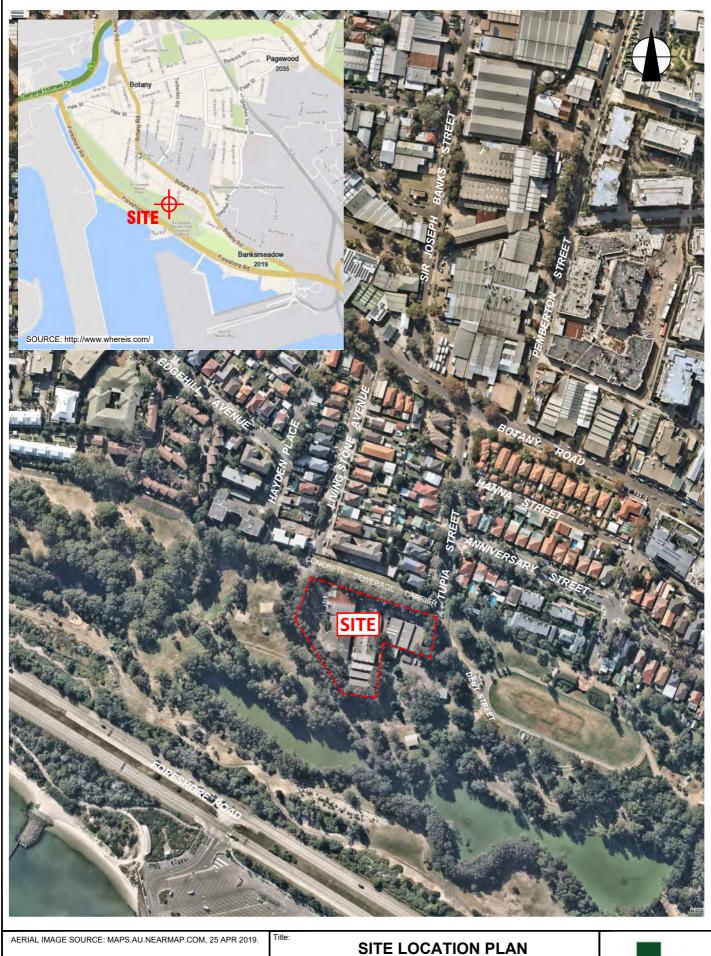
If you have any questions concerning the contents of this letter please do not hesitate to contact us.

Kind Regards

Katrina Taylor Associate | Environmental Scientist

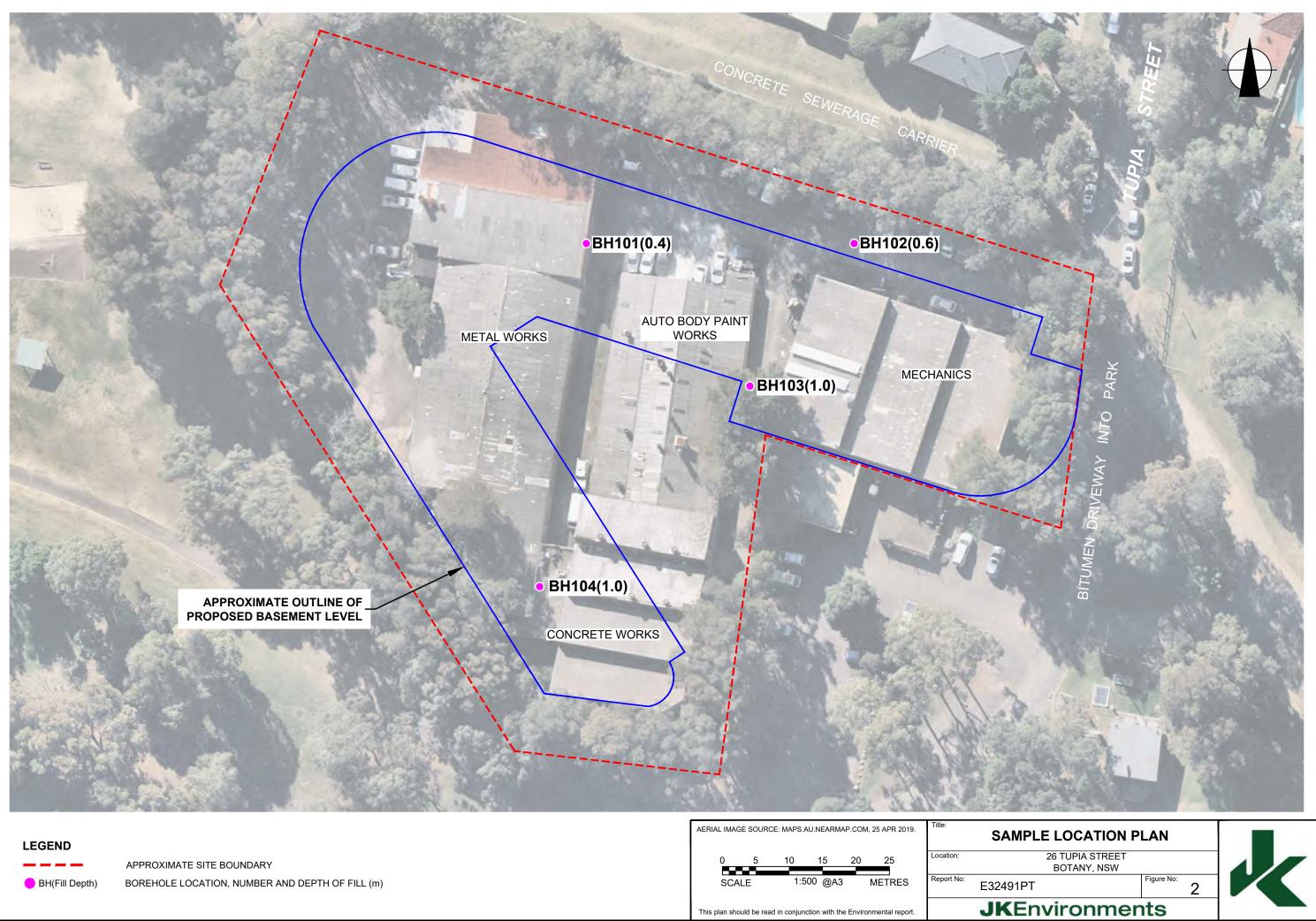
Brendan Page Principal Associate

Appendices:


Appendix A: Report Figures Appendix B: Laboratory Results Summary Table Appendix C: Information on Acid Sulfate Soils Appendix D: Borehole Logs Appendix E: Laboratory Reports & COC Documents

JKEnvironments

Appendix A: Report Figures



	Location:
	Report No:
This plan should be read in conjunction with the Environmental report.	

26 TUPIA STREET BOTANY, NSW E32491PT Figure No: JKEnvironments

© JK ENVIRONMENTS

LEGEND		AERIAL IMAGE SOUR	CE: MAPS.AU.NEARMAP.	COM, 25 APR 2019.	Title:	SAN
BH(Fill Depth)	APPROXIMATE SITE BOUNDARY BOREHOLE LOCATION, NUMBER AND DEPTH OF FILL (m)	0 5 SCALE	10 15 1:500 @A3	20 25 METRES	Location: Report No:	E3249 ²
		This plan should be re	ad in coniunction with the E	nvironmental report.		JK

© JK ENVIRONMENTS

Appendix B: Laboratory Results Summary Table

ABBREVIATIONS AND EXPLANATIONS FOR ACID SULFATE SOIL TABLE

Abbreviations used in the Tables:

ANC _{BT}	Acid Neutralising Capacity - Back Titration
ANCE	Excess Acid Neutralising Capacity
CaCO ₃	Calcium Carbonate
kg	kilogram
mol H⁺/t	moles hydrogen per tonne
pHF	Field pH
pHFOX	Field peroxide pH
рН _{ксі}	Pottasium chloride pH
S	Sulfur
SCr	The symbol given to the result from the Chromium Reducible Sulfur method
S _{NAS}	Net Acid Soluble Sulfur
% w/w	Percentage by mass

Results have been assessed against the criteria specified in Table 1.1 of National Acid sulfate Soil Guidance - National acid sulfate soil identification and laboratory method manual. Water Quality Australia. June 2018

Soil Texture	: Coarse	Analysis	рН _{ксі}	Actual Acidity (Titratable Actual Acidity -TAA) (mol H ⁺ /t)	Potential Su	lfidic Acidity (mol H ⁺ /t)	Retained Acidity (%S _{NAS})	Acid Neutralising Capacity (ANC _{BT}) (% CaCO ₃)	a-Net Acidity without ANCE (mol H ⁺ /t)	s-Net Acidity without ANCE (%w/w S)	Liming Rate - withou ANCE (kg CaCO₃/tonne)
National Acid Sulfate	Soils Guidance		PRKCL		(% 301)	(11011174)	(/03 _{NAS})	(/o CaCO ₃)	(11011174)	(%w/w 3)	(kg CaCO ₃ /tonne)
(2018			-	-	0.03	-	-	-	18	0.03	-
Sample	Sample Depth										
Reference	(m)	Sample Description									
BH101	0.5-0.95	Silty sand	6.3	<5	NA	NA	<0.005	<0.05	<5	<0.01	<0.75
BH101 - LAB DUP	0.5-0.95	Silty sand	6.3	<5	NA	NA	<0.005	<0.05	<5	<0.01	<0.75
BH101	3.2-3.45	Silty sand	5.6	<5	NA	NA	<0.005	<0.05	<5	<0.01	<0.75
BH101	6.0-6.2	Silty sand	5.7	<5	NA	NA	< 0.005	<0.05	<5	<0.01	<0.75
BH101	7.0-7.1	Sand	5.1	<5	NA	NA	< 0.005	<0.05	9.7	0.02	<0.75
BH102	0.6-0.95	Silty sand	6.6	<5	NA	NA	< 0.005	<0.05	<5	<0.01	<0.75
BH102	1.5-1.95	Silty sand	5.9	<5	NA	NA	< 0.005	<0.05	<5	<0.01	<0.75
BH102	4.5-4.6	Silty sand	5.8	<5	NA	NA	< 0.005	<0.05	<5	<0.01	<0.75
BH102	5.8-6.0	Sand	5.5	<5	NA	NA	< 0.005	<0.05	<5	<0.01	<0.75
BH102	6.8-7.0	Sand	5.5	<5	NA	NA	< 0.005	<0.05	6.40	0.01	<0.75
BH103	1.5-1.95	Clayey sand	7.8	<5	0.02	11	< 0.005	<0.05	35.0	0.06	2.6
BH103 - LAB DUP	1.5-1.95	Clayey sand	7.9	<5	NA	NA	< 0.005	<0.05	29.0	0.05	2.2
BH103	3.1-3.45	Sand	5.1	6	0.02	14	< 0.005	<0.05	46.0	0.07	3.4
BH103	4.5-4.7	Sand	6.1	<5	NA	NA	< 0.005	<0.05	8.9	0.01	<0.75
BH103	6.8-7.0	Silty sand	5.2	<5	NA	NA	<0.005	<0.05	22.0	0.04	1.6
BH104	1.5-1.95	Silty sand	5.9	<5	NA	NA	<0.005	<0.05	16.0	0.03	1.2
BH104	3.0-3.45	Silty sand	5.5	<5	0.03	16	<0.005	<0.05	42.0	0.07	3.2
BH104	5.8-6.0	Silty sand	5.3	<5	NA	NA	<0.005	<0.05	13.0	0.02	0.98
BH104	6.8-7.0	Silty sand	5.3	<5	NA	NA	<0.005	<0.05	14.0	0.02	1.1
otal Number of Sam	otal Number of Samples 19		19	19	3	3	19	19	19	19	19
/linimum Value			5.1	<5	0.02	11	<0.005	<0.05	<5	<0.01	<0.75
1aximum Value		7.9	6	0.03	16	<0.005	<0.05	46.0	0.073	3.4	

Appendix C: Information on Acid Sulfate Soils

A. <u>Background</u>

Acid Sulfate Soil (ASS) is formed from iron rich alluvial sediments and sulfate (found in seawater) in the presence of sulfate reducing bacteria and plentiful organic matter. These conditions are generally found in mangroves, salt marsh vegetation or tidal areas and at the bottom of coastal rivers and lakes. ASS materials are distinguished from other soil or sediment materials (referred to as 'soil materials' throughout the National Acid Sulfate Soils Guidance) by having properties and behaviour that have either:

- 1) Been affected considerably by the oxidation of Reduced Inorganic Sulfur (RIS), or
- 2) The capacity to be affected considerably by the oxidation of their RIS constituents.

Acid sulfate soil materials include potential acid sulfate soils (PASS or sulfidic soil materials) and actual acid sulfate soils (AASS or sulfuric soil materials). These are often found in the same profile, with AASS overlying PASS. PASS and AASS are defined further below:

- PASS are soil materials which contain RIS such as pyrite. The field pH of these soils in their undisturbed state is usually more than pH 4 and is commonly neutral to alkaline (pH 7–9). These soil materials are invariably saturated with water in their natural state. Their texture may be peat, clay, loam, silt or sand and is often dark grey in colour and soft in consistence, but these materials may also exhibit colours that are dark brown, or medium to pale grey to white; and
- AASS are soil materials which contained RIS such as pyrite that have undergone oxidation. This oxidation results in low pH (that is pH less than 4) and often a yellow (jarosite) and/or orange to red mottling (ferric iron oxides) in the soil profile. Actual ASS contains Actual Acidity, and commonly also contains RIS (the source of Potential Sulfuric Acidity) as well as Retained Acidity.

B. <u>The ASS Planning Maps</u>

The ASS planning maps provide an indication of the relative potential for disturbance of ASS to occur at locations within the council area. These maps do not provide an indication of the actual occurrence of ASS at a site or the likely severity of the conditions.

The maps are divided into five classes dependent upon the type of activities/works that if undertaken, may represent an environmental risk through the development of acidic conditions associated with ASS:

Risk Class	Description
Class 1	All works.
Class 2	All works below existing ground level and works by which the water table is likely to be lowered.
Class 3	Works at depths beyond 1m below existing ground level or works by which the water table is likely to be lowered beyond 1m below existing ground level.
Class 4	Works at depths beyond 2m below existing ground level or works by which the water table is likely to be lowered beyond 2m below existing ground level.
Class 5	Works within 500m of adjacent Class 1, 2, 3, 4 land which are likely to lower the water table below 1m AHD on the adjacent land.

Table 1: Risk Classes

JKEnvironments

C. The ASS Risk Maps

The ASS risk maps provide an indication of the probability of occurrence of ASS materials at a particular location based on interpretation from geological and soil landscape maps. The maps provide classes based on high probability, low probability, no known occurrence and areas of disturbed terrain (site specific assessment necessary) and the likely depth at which ASS materials are likely to be encountered.

D. Interpretation of ASS Field Tests

Tables A1 and A2 below provide some guidance on the interpretation of pH_F and pH_{FOX} test results, as detailed in the *National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual* (2018):

pH value	Result	Comments
pH _F ≤ 4, jarosite not observed in the soil layer/horizon	May indicate an AASS indicating previous oxidation of RIS or may indicate naturally occurring, non ASS soils.	Generally not conclusive as naturally occurring, non ASS soils, such as many organic soils (for example peats) and heavily leached soils, often also return $pH_F \le 4$.
pH _F ≤ 4, jarosite observed in the soil layer/horizon	The soil material is an AASS.	Jarosite and other iron precipitate minerals in ASS such as schwertmannite require a pH < 4 to form and indicate prior oxidation of RIS.
pH _F > 7	Expected in waterlogged, unoxidised, or poorly drained soils.	Marine muds commonly have a pH > 7 which reflects a seawater (pH 8.2) influence. Oxidation of samples with H_2O_2 can help indicate if the soil materials contain RIS.

Table A1: Interpretation of some pH_F test ranges

Source: Adapted from DER (2015a).

pH value and reaction	Result	Comments
Strong reaction of soil with H ₂ O ₂ (that is X or V)	Useful indicator of the presence of RIS but cannot be used alone	Organic rich substrates such as peat and coffee rock, and soil constituents like manganese oxides, can also cause a reaction. Care must be exercised in interpreting these results. Laboratory analyses are required to confirm if appreciable RIS is present.
pH _{FOX} value at least one unit below field pH _F and strong reaction with H ₂ O ₂ (that is X or V)	May indicate PASS	The difference between pH _F and pH _{FOX} is termed the Δ pH. Generally the larger the Δ pH the more indicative of PASS. The lower the final pH _{FOX} the better the likelihood of an appreciable RIS content. For example, a change from pH _F of 8 to pH _{FOX} of 7 (that is a Δ pH of 1) would not indicate PASS, however, a unit change from pH _F of 3.5 to pH _{FOX} of 2.5 would be indicative of PASS. Laboratory analyses are required to confirm if appreciable RIS is present.
pH _{FOX} < 3, large ΔpH and a strong reaction with H ₂ O ₂ (that is X or V)	Strongly indicates PASS	The lower the pH_{FOX} below 3, the greater the likelihood that appreciable RIS is present. A combination of all three parameters – pH_{FOX} , ΔpH and reaction strength – gives the

Table A2: Interpretation of pHFOX test results

pH value and reaction	Result	Comments
		best indication of PASS. Laboratory analyses are required to confirm that appreciable RIS is present.
A pH _{FOX} 3–4 and Low, Medium or Strong reaction with H ₂ O ₂	Inconclusive	RIS may be present; however, organic matter may also be responsible for the decrease in pH. Laboratory analyses are required to confirm the presence of RIS.
pH _{FOX} 4–5	Inconclusive	RIS may be present in small quantities, or poorly reactive under rapid oxidation, or the sample may contain shell/ carbonate which neutralises some or all acid produced on oxidation. Equally, the pH _{FOX} value may be due to the production of organic acids with no RIS present. Laboratory analyses are required to confirm if appreciable RIS is present.
$pH_{FOX} > 5$, small or no ΔpH , but Low, Medium or Strong reaction with H_2O_2	Inconclusive	For neutral to alkaline pHF with shell or white concretions, the fizz test with 1 M HCl can be used to identify the presence of carbonates. Laboratory analyses are required to confirm if appreciable RIS is present and further testing is required to confirm that effective self- neutralising materials are present.

Source: Adapted from DER (2015a).

JKEnvironments

Appendix D: Borehole Logs

Proje Loca	ect: ation:					TIAL DEVELOPMENT TANY, NSW				
Job	No. : E	32491BT			Meth	od: SPIRAL AUGER		R	.L. Surf	ace: N/A
Date	: 26/7/	/19						D	atum:	
Plan	t Type:	: JK300			Logo	ged/Checked by: H.W./T.H.				
Groundwater Record	ES ASS ASB SAMPLES SAL	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0	$\sim \sim$	-	ASPHALTIC CONCRETE: 150mm.t. FILL: Silty sand, fine to medium	M			
			-	\bigotimes		_ grained, brown, trace of ironstone	M			MADINE
		N = 10 4,5,5	- - 1 –		SM	gravel. Silty SAND: fine to medium grained, yellow brown.				MARINE
►		N = 10 3,5,5	- - 2 - -		SP	SAND: fine to medium grained, yellow brown.	W		-	
		N = 7 2,2,5	- 3 - - - - -							· - · ·
		N > 25 5,13,12 REFUSAL	4 - - 5 -							-
		N > 8 <u>5,8/50mm</u> REFUSAL	- - - - -			SAND: fine to medium grained, brown.	. W			- - - ORGANIC ODOL
			-						-	

	Clier	nt:	IGO	GI ABER	ASTU	RI					
	Proj	ect:	PR	OPOSE	D RES		TIAL DEVELOPMENT				
	Location: 26 TUPIA STREE					T, BO	TANY, NSW				
ſ	Job No.: E32491BT						od: SPIRAL AUGER		R	.L. Surf	ace: N/A
	Date	: 26/7	7/19						D	atum:	
	Plan	t Type	: JK30	00		Logg	ed/Checked by: H.W./T.H.				
	Groundwater Record	ES ASS ASB SAPLES	DB Field Tests	Depth (m)	S Graphic Log	တ္တ Unified မ Classification	DESCRIPTION SAND: fine to medium grained, brown.	 Moisture € Condition/ Weathering 	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
ŀ					<u></u>	55	END OF BOREHOLE AT 7.1m				-
				-							-
				-							-
				8-							-
				-							-
				-							-
				9-							-
				-							-
				-							-
				10 -							-
				_							-
				-							-
				11 -							_
				-							-
				-							-
				12 -							-
				-							-
				-							-
				- 13 -							-
				-							-
ΗT											-
COPYRIGHT				- 14							_

Client: Project: Location:		PROP	IGGI ABERASTURI PROPOSED RESIDENTIAL DEVELOPMENT 26 TUPIA STREET, BOTANY, NSW								
	No.: E : 26/7/	32491BT			Meth	od: SPIRAL AUGER			L. Surfa	ace: N/A	
		JK300		Logged/Checked by: H.W./T.H.					atum.		
Groundwater Record	ES ASS ASB SAL SAL SAL SAL SAL SANPLES	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
			- 0			ASPHALTIC CONCRETE: 150mm.t. FILL: Silty sand, fine to medium grained, brown, trace of igneous gravel.	M				
		N = 5 3,3,2	- - 1 — -	XXX	SM	Silty SAND: fine to medium grained, yellow brown.	M			MARINE -	
►		N = 4 2,2,2	- - 2 -						-	-	
		N = 8 1,3,5	- 3 - -		SP	SAND: fine to medium grained, yellow brown.	W			-	
		N > 11 7,11/	- 4 — - -		SM	Silty SAND: fine to medium grained,	w		-	ORGANIC ODOU	
		<u>∖100mm</u> REFUSAL	- 5 — - -		SP	brown. SAND: fine to medium grained, yellow brown.	W			-	
			6 — - - -			END OF BOREHOLE AT 7.0m				-	

Clier	nt:	IGGI /	ABER	ASTUI	RI							
Proje			PROPOSED RESIDENTIAL DEVELOPMENT									
Loca	tion:	26 TU	IPIA S	STREE	T, BO	TANY, NSW						
Job	No.: E3	2491BT	-		Meth	od: SPIRAL AUGER		R	.L. Surf	ace: N/A		
Date	: 26/7/1	9						D	atum:			
Plan	t Type:	JK300			Logo	ged/Checked by: H.W./T.H.						
Groundwater Record	ES ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
▼			0	\sim		ASPHALTIC CONCRETE: 150mm.t.						
ON MPLET ION	r-	N = 14 6,7,7	-			FILL: Gravelly sand, fine to medium grained, grey, sub-angular igneous gravel, trace of fine to medium grained sandstone gravel.	Μ			-		
•			1 - -		SC	Clayey SAND: fine to medium grained, dark brown.	W			-		
		N = 3 2,1,2	2-							- - -		
C										- - -		
		N = 9 2,4,5	- ی - -		SP	SAND: fine to medium grained, yellow brown, trace of silt.	W			-		
			- 4 -							- - -		
		N > 5 11,5/ ↓50mm REFUSAL	5 -							-		
			-		SM	Silty SAND: fine to medium grained, brown.	M			- MARINE		
			6							-		
			-			END OF BOREHOLE AT 7.0m				-		

•				D RES	IDEN	TIAL DEVELOPMENT TANY, NSW				
Job	No.: E3	32491BT	-		Meth	od: SPIRAL AUGER		R	L. Surf	ace: N/A
Date	: 26/7/	19						D	atum:	
Plan	t Type:	JK300			Logo	ged/Checked by: H.W./T.H.				
Groundwater Record	ES ASS ASB SAL DB DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		N = 4 3,3,1	0			ASPHALTIC CONCRETE: 100mm.t. FILL: Gravelly sand, fine to medium grained, grey, sub-angular igneous gravel, trace of asphalt fragments.	M			
•		N = 3 1,1,2	1 - - 2 -		SM	Silty SAND: fine to medium grained, brown, trace of organic material.	W			ORGANIC ODOU
		N = 3 1,1,2	- 3 - - - - 4							- - - - -
		N = 0 0,0,0	- - - 5 -							SPT HAMMER SA UNDER OWN WEIGHT
			- 6 - - - 7			END OF BOREHOLE AT 7.0m	_		-	- - -

ENVIRONMENTAL LOGS EXPLANATORY NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 'Geotechnical Site Investigations'. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)			
Very Soft (VS)	≤ 25	≤ 12			
Soft (S)	> 25 and ≤ 50	> 12 and \leq 25			
Firm (F)	> 50 and ≤ 100	> 25 and \leq 50			
Stiff (St)	>100 and ≤ 200	$>$ 50 and \leq 100			
Very Stiff (VSt)	>200 and ≤400	> 100 and \leq 200			
Hard (Hd)	> 400	> 200			
Friable (Fr)	Strength not attainable – soil crumbles				

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating interlaminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or

strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

```
N > 30
15, 30/40mm
```

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

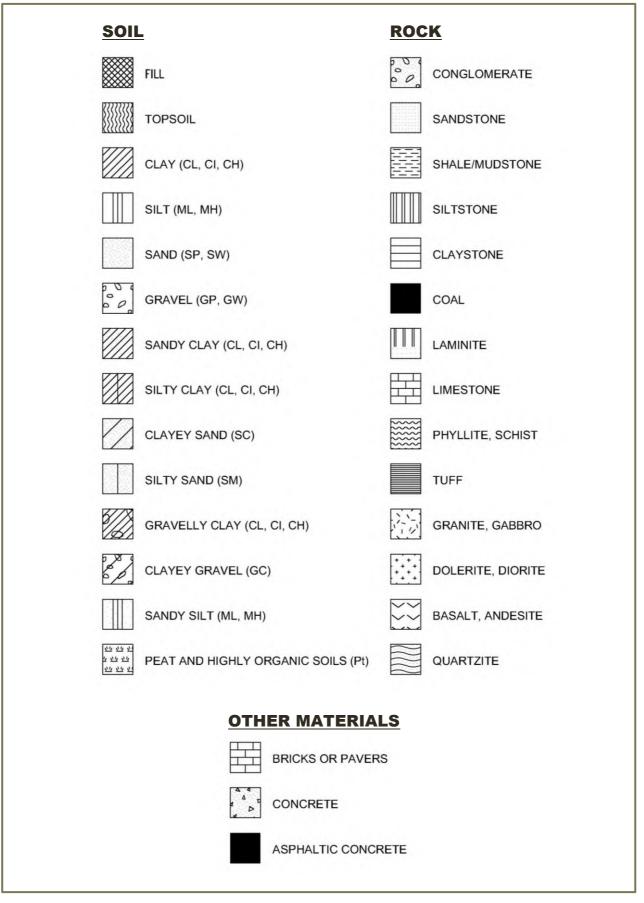
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Major	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory C	Classification
Ze	GRAVEL (more	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 4 1 < C _c < 3
sail excluding oversize 075mm)	than half of coarse fraction is larger than	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤5% fines	Fails to comply with above
e than 65% of soil excl greater than 0.075mm)	2.36mm	GM	Gravel-silt mixtures and gravel-sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
n 65% ol er than 0		GC	Gravel-clay mixtures and gravel-sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
more tha is great	SAND (more	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 6 1 < C _c < 3
ned soil (mo fraction is	than half of coarse fraction	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
Coarse grained soil (more than 65% of fraction is greater than 0.	is smaller than	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coc	2.36mm)	SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group	Group		Field Classification of Silt and Clay			
Мајо	Major Divisions		Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm	
luding)	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line	
ained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line	
35% (than		OL	Organic silt	Low to medium	Slow	Low	Below A line	
(more than ction is less	SILT and CLAY (high plasticity)	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line	
s (mor action		СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line	
ained soils wersize fra		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line	
ine grained	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-	

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_u = \frac{D_{60}}{D_{10}}$$
 and $C_c = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and \leq 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record	C	Standing water level. Time delay following completion of drilling/excavation may be shown. Extent of borehole/test pit collapse shortly after drilling/excavation.					
		Groundwater seepage into borehole or test pit noted during drilling or excavation.					
Samples	ES U50 DB DS ASB ASS SAL	Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.					
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.					
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.					
	VNS = 25 PID = 100	Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).					
Moisture Condition (Fine Grained Soils)	w > PL w ≈ PL w < PL w ≈ LL w > LL	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.					
(Coarse Grained Soils)	D M W	 DRY – runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface. 					
Strength (Consistency) Cohesive Soils	VS F St VSt Hd Fr ()	VERY SOFT – unconfined compressive strength ≤ 25kPa. SOFT – unconfined compressive strength > 25kPa and ≤ 50kPa. FIRM – unconfined compressive strength > 50kPa and ≤ 100kPa. STIFF – unconfined compressive strength > 100kPa and ≤ 200kPa. VERY STIFF – unconfined compressive strength > 200kPa and ≤ 400kPa. HARD – unconfined compressive strength > 400kPa. FRIABLE – strength not attainable, soil crumbles. Bracketed symbol indicates estimated consistency based on tactile examination or other assessment.					
Density Index/ Relative Density (Cohesionless Soils)	VL L MD D VD ()	$\begin{tabular}{ c c c c c } \hline Density Index (I_D) & SPT 'N' Value Range (Blows/300mm) \\ \hline Range (%) & (Blows/300mm) \\ \hline VERY LOOSE & \leq 15 & 0-4 \\ LOOSE & > 15 and \leq 35 & 4-10 \\ \hline MEDIUM DENSE & > 35 and \leq 65 & 10-30 \\ \hline DENSE & > 65 and \leq 85 & 30-50 \\ \hline VERY DENSE & > 85 & > 50 \\ \hline Bracketed symbol indicates estimated density based on ease of drilling or other assessment. \\ \hline \end{array}$					
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.					

Log Symbols continued

Log Column	Symbol	Definition				
Remarks	'V' bit	Hardened steel '	V' shaped bit.			
	'TC' bit	Twin pronged tu	ngsten carbide bit.			
	T_{60}	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.				
	Soil Origin	The geological origin of the soil can generally be described as:				
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 			
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 			
		ALLUVIAL	- soil deposited by creeks and rivers.			
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 			
		MARINE	- soil deposited in a marine environment.			
		AEOLIAN	- soil carried and deposited by wind.			
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 			
		LITTORAL	 beach deposited soil. 			

Classification of Material Weathering

Term	Abbreviation		Definition		
Residual Soil	R	S	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.		
Extremely Weathered	xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered (Note 1)	Weathered		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately Weathered	()	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes.	

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'.* There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	Μ	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Appendix E: Laboratory Reports & COC Documents

CERTIFICATE OF ANALYSIS 222555

Client Details	
Client	Environmental Investigation Services
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32491BT, Botany
Number of Samples	29 Soil
Date samples received	29/07/2019
Date completed instructions received	29/07/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	05/08/2019			
Date of Issue	05/08/2019			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS + %S w/w						
Our Reference		222555-2	222555-4	222555-6	222555-7	222555-9
Your Reference	UNITS	BH101	BH101	BH101	BH101	BH102
Depth		0.5-0.95	3.2-3.45	6.0-6.2	7.0-7.1	0.6-0.95
Date Sampled		26/07/2019	26/07/2019	26/07/2019	26/07/2019	26/07/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
Date analysed	-	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
pH _{kcl}	pH units	6.3	5.6	5.7	5.1	6.6
TAA pH 6.5	moles H+ /t	<5	<5	<5	<5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
pH _{ox}	pH units	5.3	5.0	5.0	4.0	5.9
TPA pH 6.5	moles H+ /t	<5	<5	6	20	<5
s-TPA pH 6.5	%w/w S	<0.01	<0.01	0.01	0.03	<0.01
TSA pH 6.5	moles H+ /t	<5	<5	6	16	<5
s-TSA pH 6.5	%w/w S	<0.01	<0.01	0.01	0.03	<0.01
ANCE	% CaCO₃	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANC _E	moles H⁺ /t	<5	<5	<5	<5	<5
s-ANC _E	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
Skci	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
Sp	%w/w	0.006	<0.005	<0.005	0.01	<0.005
Spos	%w/w	<0.005	<0.005	<0.005	0.01	<0.005
a-S _{POS}	moles H+ /t	<5	<5	<5	6	<5
Саксі	%w/w	0.01	<0.005	<0.005	<0.005	0.01
Сар	%w/w	0.02	0.005	0.005	0.006	0.02
Сад	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Mg _P	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Mg _A	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
SHCI	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
Snas	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
a-Snas	moles H+ /t	<5	<5	<5	<5	<5
s-Snas	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H⁺ /t	<5	<5	<5	10	<5
s-Net Acidity	%w/w S	<0.01	<0.01	<0.01	0.02	<0.01
Liming rate	kg CaCO₃ /t	<0.75	<0.75	<0.75	<0.75	<0.75
s-Net Acidity without -ANCE	%w/w S	<0.01	<0.01	<0.01	0.016	<0.01
a-Net Acidity without ANCE	moles H+ /t	<5	<5	<5	9.7	<5
Liming rate without ANCE	kg CaCO₃ /t	<0.75	<0.75	<0.75	<0.75	<0.75

sPOCAS + %S w/w						
Our Reference		222555-10	222555-12	222555-14	222555-15	222555-18
Your Reference	UNITS	BH102	BH102	BH102	BH102	BH103
Depth		1.5-1.95	4.5-4.6	5.8-6.0	6.8-7.0	1.5-1.95
Date Sampled		26/07/2019	26/07/2019	26/07/2019	26/07/2019	26/07/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
Date analysed	-	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
рН ка	pH units	5.9	5.8	5.5	5.5	7.8
TAA pH 6.5	moles H+/t	<5	<5	<5	<5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
pH ox	pH units	5.2	4.2	4.9	3.9	3.5
TPA pH 6.5	moles H+/t	<5	<5	<5	20	<5
s-TPA pH 6.5	%w/w S	<0.01	<0.01	<0.01	0.03	<0.01
TSA pH 6.5	moles H⁺/t	<5	<5	<5	20	<5
s-TSA pH 6.5	%w/w S	<0.01	<0.01	<0.01	0.03	<0.01
ANCE	% CaCO₃	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANC _E	moles H+/t	<5	<5	<5	<5	<5
s-ANC _E	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	<0.005	<0.005	<0.005	0.005	0.006
Sp	%w/w	<0.005	<0.005	<0.005	0.02	0.06
Spos	%w/w	<0.005	<0.005	<0.005	0.01	0.06
a-S _{POS}	moles H⁺/t	<5	<5	<5	6	35
Саксі	%w/w	<0.005	<0.005	<0.005	<0.005	0.09
Ca⊵	%w/w	0.005	0.005	<0.005	<0.005	0.16
Сад	%w/w	<0.005	<0.005	<0.005	<0.005	0.066
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	0.005
Mg₽	%w/w	<0.005	<0.005	<0.005	<0.005	0.009
Mg _A	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
SHCI	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
SNAS	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
a-Snas	moles H+/t	<5	<5	<5	<5	<5
s-Snas	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H⁺ /t	<5	<5	<5	6	35
s-Net Acidity	%w/w S	<0.01	<0.01	<0.01	0.01	0.06
Liming rate	kg CaCO₃ /t	<0.75	<0.75	<0.75	<0.75	2.6
s-Net Acidity without -ANCE	%w/w S	<0.01	<0.01	<0.01	0.01	0.056
a-Net Acidity without ANCE	moles H+/t	<5	<5	<5	6.4	35
Liming rate without ANCE	kg CaCO₃ /t	<0.75	<0.75	<0.75	<0.75	2.6

sPOCAS + %S w/w						
Our Reference		222555-19	222555-20	222555-22	222555-25	222555-26
Your Reference	UNITS	BH103	BH103	BH103	BH104	BH104
Depth		3.1-3.45	4.5-4.7	6.8-7.0	1.5-1.95	3.0-3.45
Date Sampled		26/07/2019	26/07/2019	26/07/2019	26/07/2019	26/07/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
Date analysed	-	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
рН ка	pH units	5.1	6.1	5.2	5.9	5.5
TAA pH 6.5	moles H+/t	6	<5	<5	<5	<5
s-TAA pH 6.5	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
pH ox	pH units	2.7	3.2	3.8	2.9	2.7
TPA pH 6.5	moles H+/t	160	5	20	38	120
s-TPA pH 6.5	%w/w S	0.25	<0.01	0.03	0.06	0.19
TSA pH 6.5	moles H+ /t	150	5	16	38	120
s-TSA pH 6.5	%w/w S	0.24	<0.01	0.03	0.06	0.19
ANCE	% CaCO ₃	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANC _E	moles H+/t	<5	<5	<5	<5	<5
s-ANC _E	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	0.005	<0.005	<0.005	0.005	<0.005
Sp	%w/w	0.07	0.02	0.03	0.03	0.07
Spos	%w/w	0.06	0.01	0.03	0.03	0.06
a-S _{POS}	moles H+ /t	39	9	18	16	41
Саксі	%w/w	0.02	0.01	<0.005	0.01	0.02
Ca⊵	%w/w	0.02	0.02	<0.005	0.02	0.02
Сад	%w/w	<0.005	0.010	<0.005	<0.005	0.008
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Mg _P	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Mg _A	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
SHCI	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
SNAS	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
a-Snas	moles H+ /t	<5	<5	<5	<5	<5
s-Snas	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H+ /t	46	9	22	16	42
s-Net Acidity	%w/w S	0.07	0.01	0.04	0.03	0.07
Liming rate	kg CaCO₃ /t	3.4	<0.75	1.6	1.2	3.2
s-Net Acidity without -ANCE	%w/w S	0.073	0.014	0.035	0.026	0.067
a-Net Acidity without ANCE	moles H+ /t	46	8.9	22	16	42
Liming rate without ANCE	kg CaCO₃ /t	3.4	<0.75	1.6	1.2	3.2

sPOCAS + %S w/w			
Our Reference		222555-28	222555-29
Your Reference	UNITS	BH104	BH104
Depth		5.8-6.0	6.8-7.0
Date Sampled		26/07/2019	26/07/2019
Type of sample		Soil	Soil
Date prepared	-	30/07/2019	30/07/2019
Date analysed	-	30/07/2019	30/07/2019
рН ксі	pH units	5.3	5.3
TAA pH 6.5	moles H+/t	<5	<5
s-TAA pH 6.5	%w/w S	<0.01	<0.01
pH _{Ox}	pH units	4.2	3.6
TPA pH 6.5	moles H+/t	18	48
s-TPA pH 6.5	%w/w S	0.03	0.08
TSA pH 6.5	moles H+/t	16	46
s-TSA pH 6.5	%w/w S	0.03	0.07
ANCE	% CaCO ₃	<0.05	<0.05
a-ANC _E	moles H+/t	<5	<5
s-ANC _E	%w/w S	<0.05	<0.05
S _{KCI}	%w/w S	<0.005	<0.005
Sp	%w/w	0.02	0.02
Spos	%w/w	0.02	0.02
a-S _{POS}	moles H+/t	12	13
Саксі	%w/w	0.005	<0.005
Ca _P	%w/w	0.006	0.007
Ca _A	%w/w	<0.005	<0.005
Мдксі	%w/w	<0.005	<0.005
Mg _P	%w/w	<0.005	<0.005
Mg _A	%w/w	<0.005	<0.005
Shci	%w/w S	<0.005	<0.005
S _{NAS}	%w/w S	<0.005	<0.005
a-Snas	moles H+/t	<5	<5
s-Snas	%w/w S	<0.01	<0.01
Fineness Factor	-	1.5	1.5
a-Net Acidity	moles H+/t	13	14
s-Net Acidity	%w/w S	0.02	0.02
Liming rate	kg CaCO₃/t	0.98	1.1
s-Net Acidity without -ANCE	%w/w S	0.021	0.023
a-Net Acidity without ANCE	moles H+/t	13	14
Liming rate without ANCE	kg CaCO₃ /t	0.98	1.1

Method ID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

QUALITY	CONTROL: s	POCAS -	+ %S w/w			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			30/07/2019	2	30/07/2019	30/07/2019		30/07/2019	
Date analysed	-			30/07/2019	2	30/07/2019	30/07/2019		30/07/2019	
pH _{kcl}	pH units		Inorg-064	[NT]	2	6.3	6.3	0	89	
TAA pH 6.5	moles H+/t	5	Inorg-064	<5	2	<5	<5	0	95	
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	2	<0.01	<0.01	0	[NT]	
pH _{Ox}	pH units		Inorg-064	[NT]	2	5.3	5.1	4	97	
TPA pH 6.5	moles H+/t	5	Inorg-064	<5	2	<5	<5	0	110	
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	2	<0.01	<0.01	0	[NT]	
TSA pH 6.5	moles H ⁺ /t	5	Inorg-064	<5	2	<5	<5	0	[NT]	
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	2	<0.01	<0.01	0	[NT]	
ANCE	% CaCO ₃	0.05	Inorg-064	<0.05	2	<0.05	<0.05	0	[NT]	
a-ANC _E	moles H* /t	5	Inorg-064	<5	2	<5	<5	0	[NT]	
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	2	<0.05	<0.05	0	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
Sp	%w/w	0.005	Inorg-064	<0.005	2	0.006	0.005	18	[NT]	
S _{POS}	%w/w	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
a-S _{POS}	moles H+/t	5	Inorg-064	<5	2	<5	<5	0	[NT]	
Ca _{KCI}	%w/w	0.005	Inorg-064	<0.005	2	0.01	0.01	0	[NT]	
Ca _P	%w/w	0.005	Inorg-064	<0.005	2	0.02	0.01	67	[NT]	
Ca _A	%w/w	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
Mg _{KCI}	%w/w	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
Mg _P	%w/w	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
Mg _A	%w/w	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-064	<0.005	2	<0.005	<0.005	0	[NT]	
a-S _{NAS}	moles H*/t	5	Inorg-064	<5	2	<5	<5	0	[NT]	
s-Snas	%w/w S	0.01	Inorg-064	<0.01	2	<0.01	<0.01	0	[NT]	
Fineness Factor	-	1.5	Inorg-064	<1.5	2	1.5	1.5	0	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-064	<5	2	<5	<5	0	[NT]	
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	2	<0.01	<0.01	0	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	2	<0.75	<0.75	0	[NT]	
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	2	<0.01	<0.01	0	[NT]	

QUALITY (CONTROL: s	POCAS -	+ %S w/w			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-064	<5	2	<5	<5	0		[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	2	<0.75	<0.75	0		[NT]

QUALIT	Y CONTROL: s	POCAS -	+ %S w/w			Du	plicate		Spik <u>e R</u> e	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	18	30/07/2019	30/07/2019			[NT]
Date analysed	-			[NT]	18	30/07/2019	30/07/2019			[NT]
pH _{kcl}	pH units		Inorg-064	[NT]	18	7.8	7.9	1		[NT]
TAA pH 6.5	moles H+/t	5	Inorg-064	[NT]	18	<5	<5	0		[NT]
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	[NT]	18	<0.01	<0.01	0		[NT]
pH _{Ox}	pH units		Inorg-064	[NT]	18	3.5	3.5	0		[NT]
TPA pH 6.5	moles H+/t	5	Inorg-064	[NT]	18	<5	<5	0		[NT]
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	[NT]	18	<0.01	<0.01	0		[NT]
TSA pH 6.5	moles H ⁺ /t	5	Inorg-064	[NT]	18	<5	<5	0		[NT]
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	[NT]	18	<0.01	<0.01	0		[NT]
ANC _E	% CaCO ₃	0.05	Inorg-064	[NT]	18	<0.05	<0.05	0		[NT]
a-ANC _E	moles H*/t	5	Inorg-064	[NT]	18	<5	<5	0		[NT]
s-ANC _E	%w/w S	0.05	Inorg-064	[NT]	18	<0.05	<0.05	0		[NT]
SKCI	%w/w S	0.005	Inorg-064	[NT]	18	0.006	0.007	15		[NT]
S _P	%w/w	0.005	Inorg-064	[NT]	18	0.06	0.05	18		[NT]
S _{POS}	%w/w	0.005	Inorg-064	[NT]	18	0.06	0.05	18		[NT]
a-S _{POS}	moles H+/t	5	Inorg-064	[NT]	18	35	29	19		[NT]
Ca _{KCI}	%w/w	0.005	Inorg-064	[NT]	18	0.09	0.08	12		[NT]
Ca _P	%w/w	0.005	Inorg-064	[NT]	18	0.16	0.16	0		[NT]
Ca _A	%w/w	0.005	Inorg-064	[NT]	18	0.066	0.077	15		[NT]
Mg _{KCI}	%w/w	0.005	Inorg-064	[NT]	18	0.005	0.005	0		[NT]
Mg _P	%w/w	0.005	Inorg-064	[NT]	18	0.009	0.012	29		[NT]
Mg _A	%w/w	0.005	Inorg-064	[NT]	18	<0.005	0.007	33		[NT]
S _{HCI}	%w/w S	0.005	Inorg-064	[NT]	18	<0.005	<0.005	0		[NT]
S _{NAS}	%w/w S	0.005	Inorg-064	[NT]	18	<0.005	<0.005	0		[NT]
a-S _{NAS}	moles H*/t	5	Inorg-064	[NT]	18	<5	<5	0		[NT]
s-S _{NAS}	%w/w S	0.01	Inorg-064	[NT]	18	<0.01	<0.01	0		[NT]
Fineness Factor	-	1.5	Inorg-064	[NT]	18	1.5	1.5	0		[NT]
a-Net Acidity	moles H ⁺ /t	5	Inorg-064	[NT]	18	35	29	19		[NT]
s-Net Acidity	%w/w S	0.01	Inorg-064	[NT]	18	0.06	0.05	18		[NT]
Liming rate	kg CaCO₃/t	0.75	Inorg-064	[NT]	18	2.6	2.2	17		[NT]
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	[NT]	18	0.056	0.046	20		[NT]

QUALITY (CONTROL: s	POCAS -	+ %S w/w			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-064	[NT]	18	35	29	19		[NT]
Liming rate without ANCE	kg CaCO₃ <i>/</i> t	0.75	Inorg-064	[NT]	18	2.6	2.2	17		[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & F Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Katrina Taylor

Sample Login Details	
Your reference	E32491BT, Botany
Envirolab Reference	222555
Date Sample Received	29/07/2019
Date Instructions Received	29/07/2019
Date Results Expected to be Reported	05/08/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	29 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	1.5
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	sPOCAS + %S w/w	On Hold
BH101-0.15-0.35		✓
BH101-0.5-0.95	✓	
BH101-1.7-1.95		✓
BH101-3.2-3.45	✓	
BH101-4.7-4.95		✓
BH101-6.0-6.2	✓	
BH101-7.0-7.1	\checkmark	
BH102-0.15-0.25		\checkmark
BH102-0.6-0.95	\checkmark	
BH102-1.5-1.95	\checkmark	
BH102-3.2-3.45		✓
BH102-4.5-4.6	\checkmark	
BH102-4.6-4.65		\checkmark
BH102-5.8-6.0	\checkmark	
BH102-6.8-7.0	✓	
BH103-0.15-0.3		✓
BH103-0.5-0.95		✓
BH103-1.5-1.95	✓	
BH103-3.1-3.45	✓	
BH103-4.5-4.7	✓	
BH103-5.8-6.0		✓
BH103-6.8-7.0	✓	
BH104-0.1-0.3		✓
BH104-0.5-0.95		✓
BH104-1.5-1.95	✓	
BH104-3.0-3.45	✓	
BH104-4.5-4.95		✓
BH104-5.8-6.0	✓	
BH104-6.8-7.0	✓	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

			<u>S</u>	ample	<u> AND</u>	CHAIN OF	CUS	<u>Stoi</u>	<u> </u>	<u>ORN</u>	Λ							
			EIS Job E32491BT						FRO	<u>vi:</u>	K							
							JKEnvironments								nts			
P: (02) 9910620				Date Res	ults	STANDARD]			REAR	OF 1	15 WI	CKS RO	DAD			
F: (02) 9910620	1			Required	l:			-			MAC	QUAR	UE PAI	RK, NS	W 211	13		
					•	· .	,	-					5000			-9888		
Attention: Ailer	'n			Page:	•	1 of 1]			Atte	ntion:	ktay	/lor@j	kenvir	onme	nts.co	m.au
Location:	Botan	ÿ					1			Sai	mple P	reserv	ed in	Esky o	n lce			
Sampler:	нw	,									1	ests F	lequir	ed				
						5			ľ									
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	sPOCAS											
26/07/2019	1	BH101	0.15-0.35	Р	-	Fill												
	2	-	0.5-0.95	Р	-	Natural	x								1			
	3		1.7-1.95	Р	۱ <u>-</u>	Natural				1	1							
	4		3.2-3.45	Р	-	Natural	x			1								
	5		4.7-4.95	Р	-	Natural	1									1		
	6		6.0-6.2	Р	-	Natural	x		1		-	1	1	1		1		1
	7		7.0-7.1	Р	-	Natural	x			1	-							
26/07/2019	B	BH102	0.15-0.25	Р	-	Fill				1								<u>† –</u>
	9		0.6-0.95	P	-	Natural	x		-		-	-						1
	N	·	1.5-1.95	Р	-	Natural	x											
	1		3.2-3.45	Р	-	Natural					-	1	[-	
	12		4.5-4.6	Р	-	Natural	x											
	13		4.6-4.65	P	-	Natural												1
	14	·	5.8-6.0	• P	-	Natural	x						-					
	15		6.8-7.0	P	-	Natural	x											
26/07/2019	16	BH103	0.15-0.3	р	-	Fill												
	17		0.5-0.95	Р	1	· Fill					6	5		Enviro	lab S	ervic		
	18		1.5-1.95	Р	-	Natural	x					DLAB	Ch	atswo	od NS	hley W 20	57	
	19		3.1-3.45	P	-	Natural	x				Job			Ph. (1	55	55	90 —	
	20		4.5-4.7	Р	-	Natural	x		-					29				1
	21		5.8-6.0	Р	-	Natural		-			Date Time	Rece Rece	ived: ived:					
	22		6.8-7.0	р	-	Natural	. x				Rece	ived	by: '	TC ا				
26/07/2019	23	BH104	0.1-0.3	Р	-	Fill)) Am te/ <u>i</u> ce		4			
	24		0.5-0.95	Р	-	Fill	-			l ,	Secu	rity (ntact	Brok	en/No	ne	•	
	25		1.5-1.95	Р	-	Natural	x				ľ	DA	U	Ľ	-			
	26		3.0-3.45 *	Р	-	Natural	x		-									
	27		4.5-4.95	Р	-	Natural	<u> </u>											
	28		5.8-6.0	Р	-	Natural	x				1					<u> </u>		
	Bø	29	6.8-7.0	Р	-	Natural	x											
Remarks (comm		etection limit	s required):				G - 25 A - Zi P - Pi	50mg plock <u>astic E</u>		lar tos Ba	-				_			
Relinquished By	;			Date:			Time	10:	30		Recei	ved B UM	v: E[10(1	s ad	C.	Date: 29·	07.1	19.

Þ

.

ж

ţ

CHATSWOOD NSW 2067 P: (02) 99106200		EIS Job E32491BT Number: Date Results STANDARD Required:							FROM: JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113									
Attention: Allee	n			Page:		<u>1</u> of 1	I					-9888 ntion:	_			-9888 ronme		<u>m:əú</u>
ocation:	Botany			1						Sam		reserv			n ice			
Sampler:	HW	- · · -	г <u>-</u>			- -	 			<u> </u>	ד	ests R	equir I	ed T		1		,
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	sPOCAS	·						ي تو.				
26/07/2019		BH101	0.15-0.35	Р	-	Fill								10				
			0.5-0.95	Р	-	Natural	x											
			1.7-1.95	Р	-	Natural												
			3.2-3.45	P	-	Natural	х											
•			4.7-4.95	Р	-	Natural												
			6.0-6.2	P	-	Natural	×											
<u>.</u>			7.0-7.1	Р	-	Natural	x											
26/07/2019		BH102	0.15-0.25	P	-	Fill ',						Ĺ				<u> </u>		
			0.6-0.95	Р [^]		Natural	×			_								
			1.5-1.95	P	-	Natural	x											
-		<u>* * *</u>	. 3.2-3.45	P	-	Natural .												
			4.5-4.6	P	-	Natural	x											
			4.6-4.65	P	-	Natural								<u> </u>	 			
			5.8-6.0	P	-	Natural	X					-	-	<u> </u>		<u> </u>		
			6.8-7.0	P			X			<u> </u>				<u> </u>	_			
26/07/2019		BH103	0.15-0.3	P	-	FUI									-	 		
			0.5-0.95	- P	-	Fill										<u> </u>		<u> </u>
			1.5-1.95	P	-	Natural	X											
			3.1-3.45	P	-	Natural	X			┣—				<u> </u>	_			
			4.5-4.7	P	-	Natural	x					<u>.</u>		–	┣		 	
			5.8-6.0	P 	-	Natural						<u> </u>			-	<u> </u>		
26/07/2019		BH104	6.8-7.0 0.1-0.3	P P	-	Natural Fill	X											
-0/0//2019		5/11/4	0.5-0.95	P	-	Fill				<u> </u>								
			1.5-1.95	P	-	Natural	x								-			
	├		3.0-3.45	P P		Natural	x					<u> </u>			-			
			4.5-4.95	P	-	Natural				┞──				+	-			
			5.8-6.0	P	-	Natural	x											
			6.8-7.0	Р Р		Natural	x		-						-			
Remarks (comn	i lents/de	tection limit		1	<u>L</u>		Samp G - 25 A - Zij	Omg (olock /	Slass J Asbes	lar	l	<u> </u>	<u> </u>	<u>1</u>	۱ ,	<u> </u>	<u> </u>	1
Relinquished B	n h	~~~~		Date:			P - Pla Time:		əg		Rece	ived B	y:		1	Date		
l l	H	(1.7.	19												

Ì -

CERTIFICATE OF ANALYSIS 222555-A

Client Details	
Client	Environmental Investigation Services
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32491BT, Botany
Number of Samples	Additional analysis 3 samples
Date samples received	29/07/2019
Date completed instructions received	07/08/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	12/08/2019					
Date of Issue	12/08/2019					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

SCr				
Our Reference		222555-A-18	222555-A-19	222555-A-26
Your Reference	UNITS	BH103	BH103	BH104
Depth		1.5-1.95	3.1-3.45	3.0-3.45
Date Sampled		26/07/2019	26/07/2019	26/07/2019
Type of sample		Soil	Soil	Soil
Date prepared	-	09/08/2019	09/08/2019	09/08/2019
Date analysed	-	09/08/2019	09/08/2019	09/08/2019
Chromium Reducible Sulfur	%w/w	0.02	0.02	0.03
a-Chromium Reducible Sulfur	moles H⁺ /t	11	14	16

Method ID	Methodology Summary
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity.
_	Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

Ql		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			09/08/2019	[NT]		[NT]	[NT]	09/08/2019	
Date analysed	-			09/08/2019	[NT]		[NT]	[NT]	09/08/2019	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	[NT]		[NT]	[NT]	95	

Result Definiti	Result Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & F Coli levels are less than								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Katrina Taylor

Sample Login Details	
Your reference	E32491BT, Botany
Envirolab Reference	222555-A
Date Sample Received	29/07/2019
Date Instructions Received	07/08/2019
Date Results Expected to be Reported	12/08/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	Additional analysis 3 samples
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	1.5
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments		
Nil		

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	Chromium Suite	On Hold
BH101-0.15-0.35		✓
BH101-0.5-0.95		✓
BH101-1.7-1.95		✓ ✓ ✓ ✓
BH101-3.2-3.45		✓
BH101-4.7-4.95		✓
BH101-6.0-6.2		✓
BH101-7.0-7.1		\checkmark
BH102-0.15-0.25		✓
BH102-0.6-0.95		✓
BH102-1.5-1.95		✓
BH102-3.2-3.45		✓ ✓
BH102-4.5-4.6		✓
BH102-4.6-4.65		✓ ✓
BH102-5.8-6.0		
BH102-6.8-7.0		✓ ✓
BH103-0.15-0.3		\checkmark
BH103-0.5-0.95		\checkmark
BH103-1.5-1.95	\checkmark	
BH103-3.1-3.45	\checkmark	
BH103-4.5-4.7		\checkmark
BH103-5.8-6.0		\checkmark
BH103-6.8-7.0		✓
BH104-0.1-0.3		✓
BH104-0.5-0.95		✓
BH104-1.5-1.95		\checkmark
BH104-3.0-3.45	✓	
BH104-4.5-4.95		✓
BH104-5.8-6.0		\checkmark
BH104-6.8-7.0		\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Ellen Wandala Gamage

From: Sent: To: Subject: Katrina Taylor <KTaylor@jkenvironments.com.au> Wednesday, 7 August 2019 9:42 AM Samplereceipt; Aileen Hie RE: Results for Registration 222555 E32491BT, Botany

Morning,

Please schedule chromium reducible sulfur on three day turnaround on the following samples:

BH103 (1.5-1.95) 18 BH103 (3.1-3.45) くの BH104 (3.0-3.45) こん

Thanks.

ELS Ref 222555-A 3 day TAT Due 120819 /10X

Regards Katrina Taylor Senior Environmental Scientist NSW Licensed Asbestos Assessor

T: +612 9888 5000 E: <u>KTaylor@jkenvironments.com.au</u> www.jkenvironments.com.au

JKEnvironments

PO Box 976 NORTH RYDE BC NSW 1670 115 Wicks Road MACQUARIE PARK NSW 2113

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

From: Jeremy Faircloth [mailto:JFaircloth@envirolab.com.au] Sent: Monday, 5 August 2019 6:21 PM To: Katrina Taylor <KTaylor@jkenvironments.com.au> Subject: Results for Registration 222555 E32491BT, Botany

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you an Excel or .csv file containing the results Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au

Regards,

Jeremy Faircloth | Operations Manager | Envirolab Services Pty Ltd